跳转至

二维无限深势阱

一个粒子束缚于二维无限深方形阱内,阱宽在 \(x\)\(y\) 方向,分别为 \(L_{x}\)\(L_{y}\)

阱内位势为 0 ,阱外位势为无限大。

粒子只能移动于束缚的方向(\(x\)\(y\) 方向)。

设二维无限深势阱的势能分布如下:

\[U(x,y)=\left\{\begin{array}{ll}0 & if~~0<x<L_x~~and~~0<y<L_y \\\infty & otherwise \end{array}\right.\]

Image title

图片链接

在这二维的问题里,粒子束缚于一个二维势阱内。

阱外,设波函数为 \(\psi_e\),定态薛定谔方程为:

\[\displaystyle-\frac{\hbar}{2 m}(\frac{\mathrm{d}^{2} \psi_{\mathrm{e}}}{\mathrm{d} x^{2}}+\frac{\mathrm{d}^{2} \psi_{\mathrm{e}}}{\mathrm{d} y^{2}})+(E-U(x,y)) \psi_{\mathrm{e}}=0\]

由于在阱外,\(U(x,y)\rightarrow \infty\),对于 \(E\) 为有限值的粒子,要使上述方程成立,唯有\(\psi_e=0\)

在阱内,设波函数为 \(\psi_i\),定态薛定谔方程为:

\[\displaystyle-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi_i}{\partial x^{2}}+\frac{\partial^{2} \psi_i}{\partial y^{2}}\right)=E \psi_i\]

使用分立变量法,我们假设 \(\psi_i(x, y)\) 是两个不相关的函数 \(X(x)\)\(Y(y)\) 的乘积:

\[\psi_i(x, y)=X(x) Y(y)\]

将上式带入阱内的薛定谔方程:

\[\displaystyle-\frac{\hbar^{2}}{2 m}\left(Y \frac{\partial^{2} X}{\partial x^{2}}+X \frac{\partial^{2} Y}{\partial y^{2}}\right)=E X Y\]

将方程两边都除以 \(XY\),我们可以得到:

\[\displaystyle-\frac{\hbar^{2}}{2 m}\left(\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}\right)=E\]

由于 \(\displaystyle\frac{X^{\prime \prime}}{X}\)\(\displaystyle\frac{Y^{\prime \prime}}{Y}\) 分别只和 \(x\)\(y\) 有关,则上式右边的能量可以写成 \(E_{x}+E_{y}=E\)

我们可以将上式分量,分量的两个式子分别等于对应的常数:

\[ \begin{array}{c}\displaystyle-\frac{\hbar^{2}}{2 m} \frac{X^{\prime \prime}}{X}=E_{x}\\\displaystyle-\frac{\hbar^{2}}{2 m} \frac{Y^{\prime \prime}}{Y}=E_{y}\end{array} \]

上述两式也可以写成:

\[ \begin{array}{c}\displaystyle-\frac{\hbar^{2}}{2 m} \frac{d^{2} X}{d x^{2}}=E_{x} X\\\displaystyle-\frac{\hbar^{2}}{2 m} \frac{d^{2} Y}{d y^{2}}=E_{y} Y\end{array} \]

根据之前的“一维无限深势阱”的文章:

一维无限深势阱

上述两式的解可以写成:

\[ \begin{array}{c}\displaystyle X_{n_{x}}(x)=\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n_{x} \pi x}{L_{x}}\right),\quad n_{x}=1,2,3, \cdots\\\displaystyle E_{n_x}=\frac{n_x^{2} \pi^{2} \hbar^{2}}{2 m L_x^{2}}\\\displaystyle Y_{n_{y}}(y)=\sqrt{\frac{2}{L_{y}}} \sin \left(\frac{n_{y} \pi y}{L_{y}}\right),\quad n_{y}=1,2,3, \cdots\\\displaystyle E_{n_y}=\frac{n_y^{2} \pi^{2} \hbar^{2}}{2 m L_y^{2}}\end{array} \]

根据式子 \(\psi_i(x, y)=X(x) Y(y)\),我们可以得到:

\[ \begin{array}{c}\displaystyle\psi_{n_{x}, n_{y}}(x,y)=\sqrt{\frac{4}{L_{x} L_{y}}} \sin \left(\frac{n_{x} \pi x}{L_{x}}\right) \sin \left(\frac{n_{y} \pi y}{L_{y}}\right)\\\displaystyle E_{n_x,n_y}=E_{n_x}+E_{n_y}=\frac{ \pi^{2} \hbar^{2}}{2 m}\left[\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{y}}{L_{y}}\right)^{2}\right]\\n_{x}=1,2,3, \cdots\\n_{y}=1,2,3, \cdots\end{array} \]

评论